机器学习:软件工程方法与实现pdf百度网盘下载地址?
这是一部指导读者如何将软件工程的思想、方法、工具和策略应用到机器学习实践中的著作。
作者融合了自己10年的工程实践经验,以Python为工具,详细阐述机器学习核心概念、原理和实现,并提供了数据分析和处理、特征选择、模型调参和大规模模型上线系统架构等多个高质量源码包和工业应用框架。旨在帮助读者提高代码的设计质量和机器学习项目的工程效率。
全书共16章,分为4个部分:
第壹部分 工程基础篇(1~3)
介绍了机器学习和软件工程的融合,涉及理论、方法、工程化的数据科学环境和数据准备;
第二部分 机器学习基础篇(4~5)
讲述了机器学习建模流程、核心概念,数据分析方法;
第三部分 特征篇(6~8)
详细介绍了多种特征离散化方法和实现、特征自动衍生工具和自动化的特征选择原理与实现;
第四部分 模型篇(9~16)
首先,深入地剖析了线性模型、树模型和集成模型的原理,以及模型调参方法、自动调参、模型性能评估和模型解释等;然后,通过5种工程化的模型上线方法讲解了模型即服务;*后,讲解了模型的稳定性监控的方法与实现,这是机器学习项目的最后一环。
作者简介:
张春强 是一位具有3年C/C++、7年大数据和机器学习经验且富有创造力的技术专家,在技术一线摸爬滚打近10年,先后就职于大型IT、世界500强企业,目前就职于某大型金融科技集团,负责数据挖掘、机器学习相关工作的管理和研发。时隔5年,他再次为读者书写了一本技术专著。 张和平 现就职于某互联网金融集团科技公司,任大数据模型工程师,负责机器学习在金融风控和用户运营方面的应用工作,善于运用机器学习、数据挖掘、知识图谱和大数据技术解决实际的业务问题。在大数据风控建模、用户画像、大数据平台建设等方面有丰富的实践经验。
目录:
第1章 机器学习软件工程方法 2
第2章 工程环境准备 30
第3章 实验数据准备 56
第4章 机器学习项目流程与核心概念 76
第5章 数据分析与处理 107
第6章 特征工程 142
第7章 基于Featuretools的自动特征衍生 180
第8章 特征选择 199
第9章 线性模型 232
第10章 树模型 259
第11章 集成模型 276
第12章 模型调参 313
第13章 模型性能评估 342
第14章 模型解释 361
第15章 模型上线之模型即服务 391
第16章 模型稳定性监控 421
点击下载