当前位置: 首页 > 大数据

Hadoop MapReduce实战手册PDF电子书 [34MB]

  • 大数据
  • 更新时间:2021-03-21 22:48:21
简介Hadoop MapReduce实战手册中文版怎么样? 这是一本学习Hadoop MapReduce的一站式指南,完整介绍了Hadoop生态体系,包括Hadoop平台安装、部署、运...
《Hadoop MapReduce实战手册》pdf电子书百度网盘下载
《Hadoop MapReduce实战手册》pdf电子书百度网盘下载

 

Hadoop MapReduce实战手册中文版怎么样?最新电子版百度云下载

这是一本学习Hadoop MapReduce的一站式指南,完整介绍了Hadoop生态体系,包括Hadoop平台安装、部署、运维等,Hadoop生态系统成员Hive、Pig、HBase、Mahout等。最重要的是,书中包含丰富的示例和多样的实际应用场景,以一种简单而直接的方式呈现了90个实战攻略,并给出一步步的指导。本书从获取Hadoop并在集群中运行讲起,依次介绍了高级HDFS,高级Hadoop MapReduce管理,开发复杂的Hadoop MapReduce应用程序,Hadoop的生态系统,统计分析,搜索与索引,聚类、推荐和寻找关联,海量文本数据处理,云部署等内容。


作者简介:
作者介绍 Srinath Perera是WSO2公司的高级软件架构师,与CTO一同全观整个WSO2平台架构。同时,他也是斯里兰卡软件基金会的一位研究科学家,并作为访问学者在莫勒图沃大学计算机科学与工程系授课。他是Apache Axis2开源软件项目的联合创始人,他自2002年以来一直参与Apache Web Service项目,并且是Apache软件基金会和Apache Web服务项目PMC的成员。Srinath也是Apache Axis、Axis2和Geronimo开源项目的committer。 他在美国印第安纳大学伯明顿分校获得博士和硕士学位,在斯里兰卡莫勒图沃大学获得了计算科学与工程学士学位。 Srinath已经撰写了许多技术文章和同行评审的研究文章,可以从他的个人网站找到更多细节。他还经常在技术会议上做演讲。 他长期研究大规模分布式系统。他的... 作者介绍 Srinath Perera是WSO2公司的高级软件架构师,与CTO一同全观整个WSO2平台架构。同时,他也是斯里兰卡软件基金会的一位研究科学家,并作为访问学者在莫勒图沃大学计算机科学与工程系授课。他是Apache Axis2开源软件项目的联合创始人,他自2002年以来一直参与Apache Web Service项目,并且是Apache软件基金会和Apache Web服务项目PMC的成员。Srinath也是Apache Axis、Axis2和Geronimo开源项目的committer。 他在美国印第安纳大学伯明顿分校获得博士和硕士学位,在斯里兰卡莫勒图沃大学获得了计算科学与工程学士学位。 Srinath已经撰写了许多技术文章和同行评审的研究文章,可以从他的个人网站找到更多细节。他还经常在技术会议上做演讲。 他长期研究大规模分布式系统。他的日常工作与大数据技术(如Hadoop和Cassandra)结合很紧密。他还在莫勒图沃大学研究生班教授并行计算,主要是基于Hadoop。 Thilina Gunarathne是印第安纳大学信息与计算学院博士。他在使用Apache Hadoop以及大规模数据密集型计算技术方面有着丰富的经验。他目前的主要工作是致力于研发在云环境执行可扩展的、高效的大规模数据密集型计算的技术。 Thilina发表了很多论文,并且同行评审了很多分布式计算和并行计算领域的研究论文,包括一些在云环境扩展MapReduce模型进行有效的数据挖掘和数据分析的论文。Thilina经常在学术界和工业界会议上发表演讲。 Thilina自2005年以来,在Apache软件基金会下贡献了若干个开源项目,并成为committer和PMC成员。在开始研究生学习之前,Thilina在WSO2公司担任高级软件工程师,专注于开源中间件开发。Thilina 2006年在斯里兰卡莫勒图沃大学获得计算机科学与工程学士学位,2009年在美国印第安纳大学伯明顿分校获得计算机科学硕士学位,2013年获得分布式和并行计算领域博士学位。 译者介绍 杨卓荦 阿里巴巴集团数据平台事业部资深研发工程师。2011年起,在阿里巴巴从事Hadoop五年,集团SQL on Hadoop负责人,Hadoop/Yarn/Hive contributor,开源软件爱好者。

目录:
第1章 搭建Hadoop并在集群中运行 1
第2章 HDFS进阶 26
第3章 高级Hadoop MapReduce运维 49
第4章 开发复杂的Hadoop MapReduce应用程序 72
第5章 Hadoop生态系统 110
第6章 分析 138
第7章 搜索和索引 170
第8章 聚类、推荐和关系发现 197
第9章 海量文本数据处理 231
第10章 云端部署——在云上使用Hadoop 255

点击下载